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Optimal Fighter Pursuit-Evasion Maneuvers Found
via Two-Sided Optimization

Kazuhiro Horie* and Bruce A. Conway "
University of lllinois at Urbana—Champaign, Urbana, Illinois 61801

An optimal pursuit—evasion fighter maneuver is formulated as a differential game and then solved by a recently
developed numerical method, semidirect collocation with nonlinear programming. In this method, the optimal
control for one player is found numerically, that is, by the optimizer, but that for the other player is based on
the analytical necessary conditions of the problem. Because this requires costate variables for one player, the
method is not a direct method. However, the problem can be placed in the form of conventional collocation with
nonlinear programming. Thus, it is referred to it as a semidirect method. A genetic algorithm is used to provide
an approximate solution, an initial guess, for the nonlinear programming problem solver. The method is applied
to the challenging problem of optimal fighter aircraft pursuit-evasion in three dimensions. The obtained optimal
trajectories are identified as having two phases: first a rapid change, primarily in direction, followed by a period
of primarily vertical maneuvering. Solutions for various initial positions and velocities of the evader aircraft with

respect to the pursuer are determined.

Introduction

PTIMIZATION of air combat maneuvering, a type of flight-

path optimization, involves finding the best flight path so that
a fighter aircraft may overcome an opposing fighter aircraft. The
obtained optimal path is useful for the evaluation of aircraft per-
formance because the performance of a modern fighter aircraft in
combat is determined dynamically. In addition, the requirements
for the flight control system of a modern fighter aircraft are driven
by the optimized flight path and control. Thus, optimization of air
combat maneuvering is a potentially powerful aid for fighter air-
craft development. Whereas flight-path optimization is presently
done a priori, the development of a high-speed airborne computer
in the future may enable real-time calculation of optimal air combat
maneuvering.

In general, a flight-path optimization problem can be treated as a
one-sided optimization problem (optimal control problem) or a two-
sided optimization problem. The one-sided optimization problem
considers only one player and has been successfully applied to a
variety of applications for several decades. An example would be
the minimization or maximization of a cost function for a single
aircraft’s flight path, for example, a minimum-time climb. However,
a problem such as air combat is most accurately modeled using two
competitive players. In that case, a path optimization problem often
becomes a two-sided optimization called a zero-sum two-person
differential game. A zero-sum two-person differential game mini—
maximizes a cost function, which means that one of two competitive
players minimizes a given cost function, whereas another maximizes
the cost function. It was originally formulated by Isaacs'; Bryson
and Ho? researched the same problem as an extension of an optimal
control problem.

One important disadvantage of a one-sided optimization is that
it cannot consider the optimal maneuvering of an opposing aircraft.
Therefore, it is necessary to introduce a two-sided path optimization
to solve the problem of air combat with an optimally maneuvering
opponent. A variety of air combat problems modeled by a zero-sum
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two-person differential game have been solved analytically using
simplified dynamics. One of the well-developed problems is the
homicidal chauffeur problem, which is an analog to air combat be-
tween a low-speed, highly maneuverable evader and high-speed
less-maneuverable pursuer. The problem was originally formulated
by Isaacs® using aircraft models controlling only turn rate and with-
out considering aerodynamic characteristics. Breakwell and Merz
solved the problem in two-dimensional space with a limited turn rate
for both aircraft.* One disadvantage of these analytical approaches
is the quite simplified dynamics that must be assumed. A problem
solved by Guelman et al. is described using a model in which aero-
dynamic characteristics of the pursuer are considered but not those
of the evader. This problem may represent the limit of the type of
problems that may be solved analytically.

An answer to this disadvantage is to formulate a problem using
realistic dynamics directly and solve it numerically. However, only
a limited number of studies have been done using this approach be-
cause the optimization of a realistic air combat in which both fighter
aircraft in battle maneuver optimally (using accurate aerodynamic
characteristics) is very challenging to solve even numerically.

With regard to methods applied in recent two-sided problem so-
lutions, Hillberg and Jérmark® solved an air combat maneuvering
problem in the horizontal plane with steady turn and realistic drag
and thrust data. Jirmark et al.” solved a qualitatively similar tail-
chase air combat problem but used a very different method, differ-
ential dynamic programming, and considered only coplanar cases.
A pursuit—evasion problem between missile and aircraft has been
solved using an indirect, multiple shooting method by Breitner
et al.®° and by Lachner et al.'" Raivio and Ehtamo'' solved a
pursuit—evasion problem for a visual identification of the target by
iterating a direct method.

In this research, a new numerical method for zero-sum two-person
differential games, the method of semidirect collocation with non-
linear programming (semi-DCNLP),? is applied to solve a pursuit—
evasion game for three-dimensional air combat between a superior
fighter and inferior fighter. The semi-DCNLP is developed employ-
ing DCNLP with the hope that it will share the robustness typically
found for this method.

Two-Sided Optimization
In a zero-sum two-person differential game, two competitive sets
of control variables, u , and ., drive adynamic system. In this study,
the equations of motion (1) and (2) for the states of the pursuer and
evader, respectively, are considered:

(e))

xp =fﬂ(xpv up, t)
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Xe =fo(Xe, te, 1) 2

with initial conditions
x,(to) =Xpo 3
X, () = X0 €}

Note that these equations of motion are often found in a pursuit—
evasion game in fixed coordinates.

Terminal constraints, which are functions of the states at the final
time and possibly of the final time, are

d)[xp(tf),xe(lf),tf] =0 (5)

where ¢ is time, f#y is initial time, and ¢ is the final time of the
problem.
It is assumed that some control variables are bounded as

up,l = up = up.u (6)
Ue) SU Uy (7)

Path constraints are not considered in this research.

A problem of Mayer type is considered in this research. Then,
the cost function for the problem is given as a function of the state
variables and final time in the following form:

J(xpaxesup’ue’[) :¢[xp([f)vxe(tf)vtf] (8)

The feedback strategies, v ,and =,, are introduced to determine
the control variables, u,, and u,, as a function of state variables, that
is,u,(t)= ¥p(t, xp, x,) and u,(t) =~,(t, x., x,). When Y and v,
are used, the value of the game, if it exists, is defined as

V = minmax J = max min J )
Yo ve ve vp

The existence of the value of the game is assumed in the following
discussion.

The open-loop representation of the optimal feedback strat-
egy, that is, the strategy along the optimal path as a function
only of initial states, is defined as w, (t) =y, (t, Xp0, Xe0) and
w;(t) =-,(t, X0, Xe0), Which are considered to satisfy condition
(9). Then, using initial states from Egs. (3) and (4), the value of the
game is expressed as

V= J(x,,,xg, w,, uy, t) (10)

A feedback saddle-point trajectory is obtained using an open-loop
representation of the optimal feedback strategy, ), and u;, under
constraints (1-7).

Basar and Olsder'® provide a set of necessary conditions for
an open-loop representation of a feedback saddle-point trajectory.
Here, the conditions are modified for system (1-7), a pursuit—
evasion game in fixed coordinates. First, a Hamiltonian and a func-
tion of terminal conditions are introduced as

H=Xf,+ X f. (11

P=¢+v'y (12)

where A\, and A, are adjoint variables and v is a set of La-
grange multipliers conjugate to the terminal constraints. Because
the Hamiltonian is separable, the existence of the value of the game

is assured.
When the Hamiltonian is used, adjoint equations are determined

as
T T
= () — (O
A= (axp) N <8xp) A (9

T T
AE=—<8H> =—(a—fe> A, (14)
0x, ox,

u, = argmin H = arg min ()\IT,fp) (15)
up up
u, = argmax H = argmax (A] f.) (16)
T T
P ad ad
Aplty) = (8_) = <—¢ + VT—¢) a7
X, ox, ox,
T T
9D 3
>\e fr) = = —_— b 18
@) <8x8) (Bxe—H/ axe) (19
|:H + M’] ~0 (19)
ar |
t=ty

Then, Equations (1), (2), (13), and (14) constitute a two-point
boundary value problem (TPBVP) with the initial and terminal con-
ditions (3-5) and (17-19) and controls satistying bounds (6), (7),
(15), and (16). However, it is normally very difficult to solve this
TPBVP if the problem is large, that is, has many states and/or con-
trols, or has strong nonlinearity, which often pertains for problems
including realistic dynamics.

Many researchers have had success by using direct methods for
the solution of such optimal control problems.'*~!¥ The DCNLP
method!*!31® is such a direct method. In DCNLP, the continuous
problem is discretized (in time). Implicit integration is used to en-
force the system governing differential equations. Several types of
implicit integration rules may be used, but in each case the rules
yield nonlinear equations involving the discrete state and control
parameters. There may be additional nonlinear and linear constraint
equations involving the parameters, for example, expressing initial
and terminal conditions. The problem is, thus, transformed into a
nonlinear programming problem (NLP). The DCNLP method has
been found to be very robust compared to indirect methods. There
are several reasons for this. For one, when DCNLP is used, the
problem is approximately half the size because there are no costate
variables. For another, whereas an initial guess does need to be pro-
vided to the NLP problem solver, it is a guess only of the state and
control history. The difficulty faced when using TPBVP solvers, of
having to guess initial values of the nonintuitive Lagrange multipli-
ers, is thus avoided.

Unfortunately the DCNLP method cannot be directly applied to
a differential game or mini-max problem because the NLP solver
on which the method relies must have just one objective function to
minimize. However, a method we have developed, employing the
structure of DCNLP, is capable of solving the differential game. The
new method is constructed on the basis of the following concepts.

1) In DCNLP, control parameters are usually chosen by an opti-
mizer such as NPSOL, that is, the analytical optimality conditions
(or Pontryagin’s principle) are not required, and hence, the system
adjoint variables are not required. This is always applicable to the
one-sided optimization problem.

2) If the adjoint variables for one player, for example, the pur-
suer, in a two-sided optimization are included in the DCNLP, then
the control variables for the pursuer can be found from optimality
condition (15). Because direct methods eschew the adjoint variables,
we term this method semidirect or semi-DCNLP.

3) The optimal control variables for another player, for example,
the evader, can be found numerically by the optimizer, to minimize
the objective function just for the evader.

The method is expected to maintain the robust characteristics of
DCNLP solutions. In this method, the optimality condition (15), as-
sociated adjoint equations (13), and terminal boundary conditions
are incorporated into the DCNLP formulation. The terminal bound-
ary conditions become

wext(xl” xt” AP’ tf) = 0 (20)

These are boundary conditions derived from condition (17) that are
not a function of A, or v.
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The control u,, for one of the players, obtained from condition
(15), minimizes the cost function. Then, the original problem can
be converted to

V = max J subject to conditions (1-7), (13), (15), and (20) (21)

ie

The problem represented by problem (21) can be used to construct
a NLP problem, which can be solved using DCNLP, because now
a (single) cost function is maximized and the constraints consist of
differential equations and algebraic equations.

An extended Hamiltonian system (22) and (23) is considered to
evaluate the characteristics of the solution of system (21),

af,\
Hex = Ap, fp + Apfo + AL <_ <_"> Ap>

ox,
T
= AL AL A (e A 22
- Epfﬁ+ Eefe_ Ekp g 14 ( )
P
cDexl = ¢(xpaxe, tf) + V;'d’ + sz’l;bext (23)

By applying the calculus of variations and Pontryagin principle,
we have shown'? that the solution of system (21) is satisfied with the
necessary conditions for an open-loop representation of the feedback
saddle-point trajectory when the conditions

A, = A, (24)
vp, =0 (25)

hold. This is also consistent with the result in Papavassilopoulos and
Cruz.?

The multipliers Ag, and v, can be obtained from the output of
NPSOL or whichever NLP problem solver is used for the DCNLP-
based method. Then, whether a DCNLP-based method provides the
solution satisfying the necessary conditions may be determined by
checking satisfaction of conditions (24) and (25).

Problem Definition

In this research, we will consider realistic air combat using the
new numerical solver, the semi-DCNLP. This research focuses on
the case of air combat between a superior fighter aircraft and an
inferior fighter aircraft. A superior fighter, which has high-angle-of-
attack (AOA) flight capability and thrust power with an afterburner,
will attack an inferior fighter, which has conventional AOA flight
capability and thrust power without afterburner.

Completion of the maneuver occurs when the superior fighter
takes a shooting position on the inferior fighter. The superior fighter
intends to minimize time of the completion of the maneuver, ¢/,
whereas the inferior fighter tries to maximize it. The air combat
problem is, thus, a pursuit—evasion problem, a type of differential
game, in which the cost function of the game is the time of com-
pletion. When fighters of such disparate capability are matched, a
finite time of completion is guaranteed.

A three-degree-of-freedom, point-mass model is used to describe
the aircraft trajectories. The trajectories of the aircraft are repre-
sented using six variables: velocity v, flight-path angle y, heading
angle v/, down range x, cross range y, and altitude /2. Angle of attack
« and bank angle ¢ are used for the control of the fighter aircraft.
The equations of motion are

dl)l‘ 1 .
—— = —(T;cosa; — D;) — gsiny, (26)
dr m;
dy; 1 .
& = (T; sina; + L;) cos ¢ — g cos ¥ 27
dt m;v; V;
dy; 1 . .
— = ——  (T; sinw; + L;) sin¢; (28)
dt m;v; COS y;
d.X,'
—— = v; COs ¥; COS V; 29)

dt

& in yr (30)
—— = v; COS ¥, sin y;
dr Y i

dh; .

E = v; sy, (31)
The subscript i indicates a superior fighter aircraft (the pursuer)
when i = p and an inferior fighter aircraft (the evader) wheni =e.
The lift force L and the drag force D are defined as

Li = 1ph)v}SiCr(e) (32)
D; = %P(hi)vizS,-CD(ai) (33)

The gravitational acceleration g (=32.174 ft/s?) and the wing
area S (=300.0 ft?) are constant. The model for atmospheric den-
sity p will be described, with density at sea level p, =1.7556 x
1073 slug/ft, as?

p(h;) = ps[1 — 0.00688(h; /1000)]*2% (34)

In this research, both fighter aircraft are modeled on the F-16A.
Aerodynamic characteristics of the F-16A using the result of wind-
tunnel testing?! are approximated as

0.0174 + 4.3329a — 1.3048¢>
+2.24420% — 5.8517a*

—1.3106 + 10.7892c — 9.2317a2

O<a=<m/6)

CL= — 1.119463 4+ 2.1793a* (/6 < o < 7/3)
24.6577 — 71.04460 + 83.123402
—44.08620% + 8.6582a*  (m/3 <a < 1/2)
(35)
0.0476 — 0.14620 + 0.049 102
+12.804603 — 12.6985¢* (0 < & < 7/6)
o _ |05395 579720 - 21.66250¢:2
b= +21.6213¢3 + 7.03640* (76 <a < 7/3)
16.6957 — 52.5918« + 67.32270>
—37.08603 + 7.4807a*  (7/3 <a <7/2)
(36)

Angles of attack are constrained in this research for pursuer and for
evader, that is,

0<a,<7/2 (37)
0<a, <7/6 (38)

The thrust is established on the basis of the actual F-16A air-
craft at 0.5 Mach and 20,000-ft altitude, with afterburner for the
pursuer, yielding 7, =12, 274 Ib, and without afterburner for the
evader, yielding 7, = 6124 1b (Ref. 21). Of course, the real engine
has performance that cannot be represented by a simple function
of Mach number and altitude. Therefore, the given fixed values are
applied to simplify the solution of the numerical optimization. The
mass of the aircraft, m(=637.16 slug), is set as constant because the
air combat time is generally brief.

A terminal condition is required to solve the air combat problem
as a pursuit—evasion problem. In the real world, many fighter aircraft
have a rear-aspect short-range missile and/or gun for attack. Thus,
tail chasing is one of the traditional tactics of air combat.” Tail
chasing is used as a proper terminal condition and modeled as an
interception condition with the same heading angle,

xp(ty) = x.(t5) (39)
Ypltr) = ye(ty) (40)
hy(tp) = he(ty) (41
Up(ty) = ve(ty) 42)
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The problem is characterized as a two-sided flight-path optimiza-
tion problem,

V = min max ¢, 43)
ap.Pp de.pe

subject to conditions (26-31) and (39-42) for given initial
conditions.

The semi-DCNLP method is applied to solve the problem. There-
fore, the adjoint equations and the optimality conditions for the su-
perior fighter aircraft (the pursuer) are required. The Hamiltonian
for the problem is

H = (%, /m,)[(T,cosa, — D,) —m,gsiny,]
+ ()Wp/mpvp)[(Tp sina, + L,)cos¢, —mpgcosy,l

+ ()‘1//,; /m,,v,, cos y,,)(T,, sina, + L,)sing,

+ Ay, V) COS Y, COS Y

Xp

+ Ay, v, CO8 Y, SinY, + An,vp siny, + H, 44)

yp

where H, indicates a part of the Hamiltonian that depends on the
evader.

When the Pontryagin principle is applied, the following adjoint
equations are obtained:

Pop _ oD | Moy, L,)cos¢ ]
— = sina, — L,)cos¢, —m,gcosy,
dr mpyv, m,v’ P r ! b P8 OV
Mo o L,)si A
m( psSina, — Ly)sing, — Ay, cosy,cosy,
— Ay, COS Y, siny, — A, siny, 45)
da,, _, Ay, 8 siny, Ay, Ay,
T = v, 8 COS Y — -
t vp m,v, COS ¥,
X (Tpsina, + L) sing, + Ay, v, siny, cos ¥,
+ Ay, v, 8iny, SINY, — Ay, v, €OS Y, (46)
dx
# = Ay, Vp €COS ¥, SIN VY, — &, V), COS Y, COS Y, a7
da,,
—L2 =0 48
" (48)
da,
0 49
o 49)
d)\h,, _ 1 D _ )“prp cos @, B )LWL,, sing, d_p
dt mypCh,) | """ vy v,cosy, |dh,

(50)

Equation (48) indicates that 1., is constant. Then it is convenient
to scale the remaining adjoint variables by A,,, thus removing A,
explicitly from the problem. The scaled adjoint variables are indi-
cated with a superscript #, and then the adjoint equations (45-50)
are rewritten as follows:
d)"ﬁp 2)"27 DP )\'i;p .

= —2{(Tp sina, — L,)cos¢, —m,gcosy,}
4

dt myv, mpyv

#
)‘W

———F (T, sina, — L) sin¢g, — cos y, cos ¥
mpvf, cos v, P P P P P P

- )\*;p Cos ¥ Sinr, — Aflp siny, (51)

# # oo #

3 gcosy, — Ay, 8 8iny, B Ay, tany,
- Mup P

dr v, mpv, CoS Y,

x (T,sina, + L,)sin¢, + v, siny, cosy,

+ Aﬁpvp siny, sinyr, — Azl,vp Cos Y, (52)

d)‘fﬂp . #
G = Urcosypsin Vp — Ay,Up COS Y, COS Y, (53)

dat

d;” =0 (54)
iy, 3 1 — AL, cosd, B AL, sing, dp
dr mypth,) \"" " v V) COS ) dh,
(55

A bounded AOA for the pursuer is transformed into a new un-
bounded variable using the relation

a, = (/4 (1 —cos 1yp) (56)

Then the first-order optimality conditions become

#
T A D, dC
H;,, = —sint,, LY T,sina, — L D
» 4 mp

Cp(a) da
N A . N L, dC; p
cos ), —— ) cosg,
mpvp ! "7 Cr(e) da !

A ,
L (T,, cosa, +

mpv, cos y, Cr(a) do

L, ﬂ) sin¢1,}:0 (57)

A
Hy, = ——(T,sina, + L,)sing,
myv,

)n#

vp :
———— (T, sin L,)cos¢, =0 58
mpvpcosyp( psina, + Lp) & (58)

The boundary conditions corresponding to the adjoint equations
are obtained through the following process: Let

D=—t;+vi(x, —x)+v2(yp — ¥e)
+v3(zp —20) Fva(¥p — Yo li=s, (59)

then the terminal boundary conditions on the adjoint variables
become

9o
Ax, (tr) = P =V (60)
Xp t=ty
1 09
A () = =0 61)
dx, () DV iy
1 90
M (1) = =0 (62)
yp S Ay, () By, r=ts
1 P V.
N T T
}‘xp(tf) 8%: t=ty Vi
1 99 V2
M(t) = —— =— (64)
yp\'f dx, (7)) 0y)p =, VI
1 0P V3
M) = —— == (65)
I ) Bk, M
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Note that, of the boundary conditions on the adjoint variables in
the semi-DCNLP problem, only conditions (61) and (62) are applied
because vy, v,, v3, and v, are unknown parameters.

The semi-DCNLP formulation of the air combat problem is, thus,

J =maxt, (66)
Ye, Ve

subject to Egs. (26-31) and (51-55) as differential equations, con-
ditions (39-42) and (61) and (62) as terminal conditions, and con-
straints (57) and (58) as algebraic constraints, for given initial
conditions.

Results

To make the air combat problem realistic, we choose initial con-
ditions representative of real air combat, and to make the problem
interesting, the aircraft need altitude to allow them to maneuver. In
this research, 20,000-ft altitude and 400-ft/s velocity are selected
as a nominal, initial condition for both aircraft. To evaluate three-
dimensional pursuit-evasion maneuvering, the relative initial po-
sition and relative motion between the pursuer and the evader are
given out-of-plane components. The nominal initial condition is
that 1) the evader flies on the right side of the pursuer at a line of
sight 30 deg from forward, 2) both aircraft fly in the same direction,
3) both aircraft are in level flight, and 4) the distance between the
pursuer and the evader is 4000 ft.

The state variables and the time are normalized by a reference
time of 10.0 s, a reference length of 4000 ft, and a reference mass
of 637.16 slug, as appropriate. Normalization avoids reducing the
accuracy of the variables by keeping them to similar order and im-
proves the robustness of the NLP problem solver.

The pursuer is put at the origin of the coordinate system at the
initial time. Thus, the initial condition for the nominal case is

[V Vs Vs Xps Y Bip,y Ve, Ves We, Xey Ve, hel
= [1.0,0.0,0.0, 0.0, 0.0, 5.0, 1.0, 0.0, 0.0,

cos(—m/6), sin(—m/6), 5.0] 67)

The semi-DCNLP problem has been solved using a discretization
of the problem based on the work of Herman and Conway, in which
fifth-degree polynomials are used to represent the state variables
in each segment of the problem.!> An initial guess of the discrete
solution of the problem is required by the NLP problem solver. For
this purpose, an approximate solution of the problem is obtained
using a method developed by Horie and Conway based on genetic
algorithms (GAs).?> Ordinarily, as mentioned before, the DCNLP
method is quite robust, and a sufficient initial guess, of the state and
control variable time histories, is not difficult to arrive at. However,
the semi-DCNLP requires in addition an initial guess of the costates
for one player; these are not intuitive, even their magnitudes are
difficult to guess a priori. An approximate solution for the optimal
trajectories and for the costate time histories, using a GA, can be
found from a random population of initial guesses of the GA chro-
mosome; it is an effective way to generate an initial guess for the
NLP solver from which the solver can converge.

With this guess, the NLP solver converges to an optimal solution,
that is all of the system governing equations (26-31) and (51-55)
are satisfied implicitly using the fifth-degree Gauss—Lobatto (G-L)
collocation rules (Ref. 15) and the constraints (39-42), (57) and
(58), and (61) and (62) are satisfied to O(10~7), for the given ini-
tial conditions, whereas the time to interception (66) is maximized.
The NLP problem solver, NZSOL, outputs the Kuhn—Tucker (K-T)
multipliers conjugate to the constraints. However, we have previ-
ously shown'®232* that when the G—L implicit integration rules are
used the K-T multipliers are (except perhaps for a multiplicative
constant) a discrete representation of the continuous Lagrange mul-
tipliers of the problem. By inspection of the multipliers, we note
that in the converged solution the adjoint variables constituting the
left-hand side of Eq. (24) are very close numerically to the corre-
sponding Lagrange multipliers from the right side of Eq. (24). In
addition, condition (25) is satisfied by the solution.
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Fig. 1 Saddle-point trajectories on a horizontal plane (nominal case).
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Fig. 2 Saddle-point trajectories on a vertical (X-Z) plane (nominal
case).
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Fig. 3 Histories of bank angle of saddle-point trajectories (nominal
case).

The following observations are made from the solutions.

1) The trajectories (Figs. 1 and 2) show the three-dimensional real-
istic air combat problem (pursuit—evasion problem) has two phases,
qualitatively speaking. In the first phase, the aircraft are steered in
three-dimensional space so that their maneuvers will be primarily in
a vertical plane in a second phase. In the second phase, the aircraft
mainly do dive maneuvers in a vertical plane. These characteris-
tics of the two phases are observed in Figs. 3-6. In Figs. 3-6, the
characters of the time histories change at approximately 0.9 time
units (9 s). These characteristics are qualitatively observed in sim-
pler problems such as the homicidal chauffeur problem, which has
a similar two-phase structure.’

2) The bank angle in the second phase shows chattering control
(Fig. 3). This is supported by the fact that A% and A%  become
zero in this region and, thus, Eq. (58) cannot determine the bank
angle, that is, the solution for the bank angle is singular. From the
system equations (26-31), it is clear that the principal effect of the
nonzero bank angle ¢ is to produce a nonzero time rate of change the
heading angle 1. However, one can see, for example, in Fig. 7, that
¥ changes rapidly at the beginning but becomes zero as the aircraft
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Fig. 6 Histories of normal acceleration of saddle-point trajectories
(nominal case).

take fixed headings for the pursuit. That is, the chattering bank angle
in the second phase is likely a numerical artifact; the value should
probably be zero. Except for this observation, the bank angle control
is consistent with Figs. 1 and 2, that is, the aircraft takes a bank angle
in the first phase but does not in the second phase.

3) Figure 6 shows that the aircraft uses feasible vertical maneu-
vering, that is, it maneuvers at rates tolerable by a human pilot. The
normal acceleration ranges from 1 g through 5 g throughout the
time history. Also, the angle of attack is below 15 deg. This means
that the pursuer does not use poststall flight capability in this case.

To evaluate the effect of relative motion, the initial heading angle
of the evader is varied while maintaining the same initial conditions
as in the nominal case for the other parameters. The semi-DCNLP
method yields convergent solutions for cases in which the heading
angle of the evader ranges from —60 to 4-60 deg of the initial heading
angle of the pursuer.

Figures 7 and 8 show the group of saddle-point trajectories. All
of the trajectories obtained are qualitatively the same as that of the
nominal case (in which the initial heading angle of the evader is
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Fig. 7 Saddle-point trajectories on horizontal plane: parameter, initial
heading angle of evader.
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Fig. 8 Saddle-point trajectories on vertical (X-Z) plane: parameter,
initial heading angle of evader.
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Fig. 9 Evader initial heading angle vs final heading angle.

zero). Also, the smaller the initial heading angle is, the smaller the
total change of the heading angle. This tendency is recognized in
Fig. 9, which shows the relationship between the initial and the final
heading angle of the evader. Figure 9 shows the relationship is linear
and predicts that the initial angle is equal to the final angle when the
initial angle is approximately 75 deg. It is predicted that the evader’s
maneuver changes qualitatively beyond this point, otherwise the
magnitude of the initial heading angle of the evader would become
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larger than the magnitude of the final heading angle, and in that case
the evader would approach the pursuer.

To evaluate the effect of initial relative position, the initial line of
sight (LOS) is varied while maintaining the same initial conditions
as in the nominal case for the other parameters. The semi-DCNLP
method yields convergent solutions for cases ranging from —30 to
—90 deg of the initial LOS.

Figures 10 and 11 show a group of saddle-point trajectories.
Figure 12 shows the relationship between the initial LOS and the
final heading angle. Figures 10—12 suggest the interesting result that
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Fig. 10 Saddle-point trajectories on horizontal plane: parameter, ini-
tial LOS angle.
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Fig. 11 Saddle-point trajectories on vertical (X-Z) plane: parameter,
initial LOS angle.
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the initial LOS is close to the final heading angle. Figure 13 shows
the relationship between the initial LOS and the time to intercep-
tion, the objective function. It is observed from Fig. 13 that the initial
LOS hardly affects the value of the time to interception.

Conclusions

An air combat problem with realistic aerodynamic and aircraft
models, between a superior fighter and an inferior fighter, is modeled
using a pursuit—evasion game approach and is solved using the semi-
DCNLP method. Solutions of this problem are rarely seen in the
literature because the problem is very complicated and difficult to
solve using extant methods. However, the semi-DCNLP method,
assisted with an initial guess obtained via a GA, solves the problem
easily and robustly.

For three-dimensional air combat, we find that the optimal trajec-
tory consists qualitatively of two phases. The aircraft first maneuver
out of the original plane of their motion, followed by a second phase
in which the motion is mainly confined to a vertical plane. It is also
found that change in the initial LOS changes the value of the cost
function, the time to capture, only slightly, whereas change in the
initial heading angle and altitude of the evader change the value of
the cost function significantly.

This research has identified some characteristics of pursuit—
evasion type air combat using the semi-DCNLP method for trajec-
tory optimization. Two suggestions are made for extensions of the
research. The first is to use a more accurate model, for such things
as thrust and atmospheric density, and then identify more precisely
the characteristics of the air combat. This would be useful for the
evaluation of the combat ability of a specific fighter aircraft. Another
suggestion is to evaluate the qualitative differences in optimal air
combat maneuvering among a variety of models and, thus, find the
most cost-effective model. The idea is to conserve calculation time
and provide the saddle-point trajectories in just sufficient quality.
This is perhaps more useful for trade-off studies in the conceptual
design phase of fighter aircraft.
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